Elliptic Differential Equations with Measurable Coefficients

نویسنده

  • DOYOON KIM
چکیده

We prove the unique solvability of second order elliptic equations in non-divergence form in Sobolev spaces. The coefficients of the second order terms are measurable in one variable and VMO in other variables. From this result, we obtain the weak uniqueness of the martingale problem associated with the elliptic equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEUMANN PROBLEM FOR NON-DIVERGENCE ELLIPTIC AND PARABOLIC EQUATIONS WITH BMOx COEFFICIENTS IN WEIGHTED SOBOLEV SPACES

We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochast...

متن کامل

Convex Integration and the L Theory of Elliptic Equations

This paper deals with the L theory of linear elliptic partial differential equations with bounded measurable coefficients. We construct in two dimensions examples of weak and so-called very weak solutions, with critical integrability properties, both to isotropic equations and to equations in non-divergence form. These examples show that the general L theory, developed in [1],[24] and [2], cann...

متن کامل

The Dirichlet problem for higher order equations in composition form

The present paper commences the study of higher order differential equations in composition form. Specifically, we consider the equation Lu = divB∗∇(a divA∇u) = 0, where A and B are elliptic matrices with complexvalued bounded measurable coefficients and a is an accretive function. Elliptic operators of this type naturally arise, for instance, via a pull-back of the bilaplacian ∆ from a Lipschi...

متن کامل

Boundary problems for the second order elliptic equations with rough coefficients

The main focus of the meeting was on boundary value problems for general differential operators L = −divA∇. Here A is an elliptic matrix with variable coefficients, given by complex-valued bounded and measurable functions. Such operators arise naturally in many problems of pure mathematics as well as in numerous applications. In particular, they describe a wide array of physical phenomena in ro...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008